Abstract
Carbon electrode‐based perovskite solar cells (C‐PSCs) without hole transport layer (HTL) have been emerging as a promising low‐cost photovoltaic technology with excellent stability for commercialization. However, the loose physical contact between the carbon electrode and perovskite layer, as well as the relatively poor conductivity of the carbon film, contributes mainly to the large gap in the power conversion efficiency (PCE) between C‐PSCs and the metal (Ag, Au, etc.,) electrode‐based counterparts. To this end, a simple but effective mechanical compression strategy for efficient C‐PSCs is developed. The mechanical compression densifies the porous carbon electrode for high film conductivity and also provides intimate contact between carbon and perovskite layers for fast charge extraction. Consequently, the resulting HTL‐free C‐PSCs using MAPbI3 (MA = methylammonium) absorber yield a PCE of 15.29%, corresponding to a 27.6% improvement compared to the counterpart without mechanical pressing treatment. Moreover, the compacted carbon film also serves as an enhanced barrier against the intrusion of water and oxygen, and the unencapsulated device retains 88.9% of its initial PCE after 1000 h of aging in ambient conditions with 35 ± 2% humidity. This work paves a simple and effective way toward efficient and stable C‐PSC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.