Abstract

Motor enzymes use energy from ATP dephosphorylation to generate movement by a mechanical cycle, moving and pushing in one direction while attached to their cytoskeletal substrate, and recovering by moving relative to their substrate to a new attachment site. Mainstream models assert that movement while attached to the substrate results from preexisting strain in the attached motor. The additional underlying ideas can be described in terms of three components for strain amplification: a rotating lever arm, multiple attached states, and elastic compliance. These components determine how energy is recovered during the mechanical cycle and stored in a strained motor. They may coexist in a real motor; the challenge is to determine the contributions of each component. Because these components can generate similar relationships between strain energy and strain, standard measurements of motor function do not discriminate easily between these components. However, important information could be is provided by observations that suggest weak coupling between chemical and mechanical cycles, observations of negative force and movement events in single motor experiments, and the discovery that two motors that move in opposite directions have very similar structures. In models incorporating changes in conformation between attached states, these observations are only explained easily if the conformational changes are tightly coupled to changes in the strength of motor-substrate binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call