Abstract

This work aims to investigate the mechanical and sound absorption characteristics of industrial waste tea leaf fiber (WTLF), kenaf and E-glass fiber–reinforced hybrid epoxy composites through experimental studies. The WTLF and kenaf fibers were initially treated with 5% sodium hydroxide. Hybrid composites were fabricated by compression molding technique with a composition of 40 wt.% fiber and 60 wt.% matrix. The fabricated hybrid composites were subjected to mechanical and sound absorption studies as per ASTM standards. Results revealed better mechanical properties in the composites with 25 wt.% kenaf and 5 wt.% WTLF, whereas sound absorption characteristics were better for composites containing 25 wt.% WTLF and 5 wt.% kenaf fiber. The surface morphology of the fractured specimens such as fiber pullout and matrix crack was examined using scanning electron microscopy. Spectrum investigation of alkali-treated hybrid composites showed excellent interfacial bonding between the polymer and fiber compared to the untreated fiber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call