Abstract

A micro-tensile testing system has been developed to measure mechanical properties of a thermal SiO2 thin film. Through the stiffness coefficient calibration of the tensile system in situ, the deformation of the gage section is obtained using a two-serial spring model. A simple gripping method with rapid alignment is presented to improve alignment precision and repeatability of the measurement. Two kinds of specimens, including traditional ones and those with suspended spring beams, are fabricated using inductively coupled plasma (ICP) etching technology. The finished free-standing thermal SiO2 beams are buckled because of the compressive residual stress. The residual elongation of the beams could be obtained from the original load–displacement curves of the SiO2 beams. Thus the compressive residual stress, Young's modulus and the fracture strength of the thermal SiO2 beams were achieved simultaneously from the tensile testing. The measured values of Young's modulus are 64.6 ± 3 GPa for traditional SiO2 film specimens and 65.5 ± 2.8 GPa for those with suspended spring beams. The measured residual stress is 354 ± 26 MPa and the fracture strength is 426 ± 63 MPa. The measured modulus and residual stress are reasonably coherent with other reports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.