Abstract

A rheological constitutive model is required to characterize the behavior of a nitrocellulose-based material used as a binder in polymer bonded explosives. The behavior of the binder is extremely important as it heavily influences the mechanical response of the polymer composite; this is due to the binder having stiffness five orders of magnitude lower than the stiffness of the explosive crystals. Determination of the material model parameters is not straightforward; a constitutive law that will capture the pronounced time-dependent, temperature-dependent, and highly non-linear, large deformation response of this material is required. In this study, the material properties of the binder are determined using constant shear strain rate, shear stress relaxation, and monotonic tensile test results obtained over a wide range of temperature and strain rates. A visco-hyperelastic model is parameterized using the derived test data. In addition, recommendations are made regarding accurate data derived from rheological testing on such materials falling in the soft solid rather than the complex fluid domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call