Abstract

Hydrogels formed from self-assembling synthetic oligopeptides have been studied for almost 2 decades for use in tissue engineering and drug delivery. Although a great deal has been learned about the microstructure of these materials, there remain questions about how peptide filaments are ordered to form a gel. These unanswered questions leave a disconnect between our understanding of the observed nanoscale mechanical properties of peptide filaments and the macroscale properties of the gels they constitute. This study helps to bridge this gap by examining the role of filament length and interfilament crosslinks in determining bulk mechanical properties. Microindentation was used for mechanical characterization, and microstructure was observed using thin-section transmission electron microscopy images of gels embedded in resin. Results suggest a gel structure in which filaments are not densely bundled as previously suggested and confirm that crosslinking can be an effective strategy to increase the stiffness of self-assembling oligopeptide gels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.