Abstract

Mechanical manipulation at the single molecule level of proteins exhibiting mechanical stability poses a technical challenge that has been almost exclusively approached by atomic force microscopy (AFM) techniques. However, due to mechanical drift limitations, AFM techniques are restricted to experimental recordings that last less than a minute in the high-force regime. Here we demonstrate a novel combination of electromagnetic tweezers and evanescent nanometry that readily captures the forced unfolding trajectories of protein L at pulling forces as low as 10 ∼ 15 pN. Using this approach, we monitor unfolding and refolding cycles of the same polyprotein for a period of time longer than 30 min. From such long-lasting recordings, we obtain ensemble averages of unfolding step sizes and rates that are consistent with single-molecule AFM data obtained at higher stretching forces. The unfolding kinetics of protein L at low stretching forces confirms and extends the observations that the mechanical unfolding rate is exponentially dependent on the pulling force within a wide range of stretching forces spanning from 13 pN up to 120 pN. Our experiments demonstrate a novel approach for the mechanical manipulation of single proteins for extended periods of time in the low-force regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.