Abstract

The mechanical stability of porous Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3− d (BSCF) material was investigated using depth-sensitive microindentation and ring-on-ring biaxial bending tests. The porous BSCF was characterized as potential substrate material for the deposition of a dense membrane layer. Indentation tests yielded values for hardness and fracture toughness up to a temperature of 400 °C, while bending tests permitted an assessment of elastic modulus and fracture stress up to 800 °C. In addition the fracture toughness was evaluated up to 800 °C measuring in bending tests the fracture stress of pre-indented specimens. The results proof that the indentation-strength method can be applied for the determination of the fracture toughness of this porous material. In comparison to dense material the values of the mechanical parameters were as expected lower but the temperature dependences of elastic modulus, fracture strength and toughness were similar to those reported for dense BSCF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.