Abstract

This paper aims to comparatively evaluate the compressive and flexural response of high strength and ultra-high-performance polyvinyl Alcohol (PVA)- and polyethylene (PE)-reinforced ECCs at fiber contents of 1.75 vol% and 2.25 vol%, utilizing the same base mixture design. The base mixture was formulated with the objective of reducing the reliance on Portland cement by replacing 55% of it with supplementary cementitious materials (fly ash and silica fume). The flexural loading protocol consisted of monotonic loading with a displacement rate of 0.3 mm/min and 2.0 mm/min, and a repeated/cyclic loading with a displacement rate of 2.0 mm/min. The developed PVA- and PE-reinforced ECCs exhibited significant enhancements in average compressive strength, with PVA-reinforced ECC showing a 19% improvement and PE-reinforced ECC demonstrating a 39% improvement compared to the control specimen. In terms of flexural strength, PVA-reinforced ECC exhibited a 51% enhancement, while PE-reinforced ECC achieved an impressive 199% improvement. Furthermore, a digital image correlation system (DIC) was employed to characterize the cracking behavior and strain response of the specimens. The developed ECCs exhibited multiple cracking and strain-hardening behavior, exceeding a flexural strain of 3%. PE-reinforced ECCs displayed narrower cracks under low loading rates, whereas PVA-reinforced ECCs demonstrated reduced crack widths subjected to high loading rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call