Abstract
Proton-exchange membrane (PEM) water electrolysis is a promising technology for producing clean hydrogen by electrochemically splitting water when paired with renewable energy sources. A major roadblock to improving electrolyzer durability is the mechanical degradation of the cell components, which requires an understanding of their mechanical response under device-relevant conditions. However, there is a lack of studies on the mechanical characterization of the PEM and other components, as well as and their interactions. This study aims to address this gap by using a custom-designed testing apparatus to investigate the mechanics of electrolyzer components in uniaxial compression at 25 and 80 °C. Findings show stress-strain response of components have a varying degree of nonlinearity owing to their distinct deformation mechanisms and morphologies, from porous structures to polymers. These results are used to develop an expression for compressive stress-strain response of Nafion membranes and then analyze the deformation of components under applied pressure by using a 1-D spring network model of cell assembly. This work provides a new understanding of mechanical responses of the electrolyzer membrane and cell components, which can help assess material design and cell assembly strategies for improved electrolyzer durability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.