Abstract

The structure and mechanical properties of the coatings formed by reactive detonation spraying of titanium in a wide range of spraying conditions were studied. The variable deposition parameters were the nature of the carrier gas, the spraying distance, the O2/C2H2 ratio, and the volume of the explosive mixture. The phase composition of the coatings and the influence of the spraying parameters on the mechanical properties of the coatings were investigated. In addition, nanohardness of the individual phases contained in the coatings was evaluated. It was found that the composition of the strengthening phases in the coatings depends on the O2/C2H2 ratio and the nature of the carrier gas. Detonation spraying conditions ensuring the formation of composite coatings with a set of improved mechanical properties are discussed. The strength of the coatings was determined through the microhardness measurements and local characterization of the phases via nanoindentation. Three-point bending tests were employed in order to evaluate the crack resistance of the coatings. The strengthening mechanisms of the coatings by oxide or carbonitride phases were discussed.

Highlights

  • At present, several coating deposition methods are known and widely used in the industry.The choice of a particular method is dictated by a combination of factors, such as the level of loading and operating conditions, the shape, size and geometry of machine parts to be coated, the required thickness of the coating, the necessity for mechanical post-processing, the requirements for adhesive and cohesive strength and the cost of the final product.Thermal spraying is widely used for surface strengthening and restoration

  • The deposition of the coatings onto titanium substrates was carried out using a computer controlled detonation spraying (CCDS2000) facility (Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia) [23]

  • It should be kept in mind that air, when used as a carrier gas, is not the only source of oxidizing agents, as the detonation products themselves contain oxidizing species

Read more

Summary

Introduction

Several coating deposition methods are known and widely used in the industry.The choice of a particular method is dictated by a combination of factors, such as the level of loading and operating conditions, the shape, size and geometry of machine parts to be coated, the required thickness of the coating, the necessity for mechanical post-processing, the requirements for adhesive and cohesive strength and the cost of the final product.Thermal spraying is widely used for surface strengthening and restoration. Several coating deposition methods are known and widely used in the industry. The choice of a particular method is dictated by a combination of factors, such as the level of loading and operating conditions, the shape, size and geometry of machine parts to be coated, the required thickness of the coating, the necessity for mechanical post-processing, the requirements for adhesive and cohesive strength and the cost of the final product. Thermal spraying is widely used for surface strengthening and restoration. Thermal spraying is used to deposit high-strength materials [1] and multicomponent coatings reinforced with finely dispersed inclusions, which ensure. In order to form coatings containing intermetallic phases with high adhesion strength and corrosion resistance, vacuum spraying [1,2,4] is employed or deposition is carried out in an inert gas atmosphere [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call