Abstract
This study is part of a research program that aims to develop a constitutive three-dimensional model of the periodontal ligament (PDL) through the identification of pertinent material parameters. As part of this program, bovine PDL was utilized to establish stress-strain responses under tensile and compressive loading conditions. Fresh bovine molars were secured, frozen and prepared to appropriate dimensional specifications. Bar-shaped specimens that comprised portions of dentine, PDL and bone were produced. Push-pull tests were conducted using a specifically constructed loading machine. Full range monotonic stress-strain diagrams were generated. The effect of a rate increase on cyclic S-E diagrams was also determined. The influence of specimen thickness was expressed in terms of modulus of elasticity, strength, uniaxial maximizer strain, and strain energy density. The overall load-response was heavily hysteretic in compression. On the tensile side, after a steep rise, the curve tended to flatten out asymptotically. Variations in rate that spanned four orders of magnitude had no effect on reciprocal load responses. The E-modulus was in the 4-8 MPa range, the strength of the PDL was 1-2 MPa, the maximizer strain was at 45-60% and the strain energy density ranged between 0.3 and 0.4 MPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.