Abstract

Silicon oxycarbide glass with the composition Si 1.0O 1.6C 0.8 was synthesized from a commercial polysiloxane by polymer pyrolysis. Dense SiOC samples were obtained by cross linking of the polysiloxane followed by warm pressing to form cylindrical samples and subsequent pyrolysis of the shaped polymer at 1100 °C in Ar. Hardness ( H), Young's modulus ( E) and Poisson's ratio ( ν) of the as-prepared SiOC glass were evaluated from indentation studies and from acoustic microscopy. Indentation studies showed that E depends on the applied load and amounts to 90 GPa for low load and to 180 GPa for high load. Average values of 6.4 and 101 GPa were obtained for H and E, respectively, by the Vickers indentation method. Acoustic microscopy analysis yielded values of 96 GPa and 0.11 for E and ν, respectively. Compared to vitreous silica, the Young's modulus of the SiOC glass is about 1.3–1.5 times higher. To the knowledge of the present authors, the measured Poisson's ratio ( ν = 0.11) is the lowest reported so far for glasses and polycrystalline ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.