Abstract

Loess exhibits poor engineering properties, such as low strength and poor water stability. Conventional materials used for improving loess, such as cement and lime, result in environmental pollution issues throughout their production and application processes. To assess the efficacy of bio-based materials, including calcium alginate (CA), xanthan gum (XA), cotton fibers (CO) and flax fibers (FA) in the treatment of loess, the improved soil's strength, disintegration, and water resistance were examined. Subsequently, an optimal amendment approach was determined, and dry-wet cycle tests and microscopic observation were performed. The results show that 1.0 % calcium alginate can effectively enhance the strength of loess, significantly improving its resistance to disintegration with almost no observable disintegration; permeability is significantly reduced, and water repellency is enhanced. 2.0 % xanthan can improve the strength and disintegration resistance of loess, but the improvement in strength is lower than that of calcium alginate. Additionally, the improved soil with XA experiences a flocculent disintegration in static water, which cannot maintain the soil structure. Cotton fibers and flax fibers can enhance both compressive and tensile strength of the soil. The content of 0.45 % flax fibers is considered the optimal choice as it has no effect on water stability. Combining the above results, the combination of 1.0 % CA and 0.45 % FA has been selected to improve the loess, which effectively improves the comprehensive mechanical properties and water stability of the composite improved soil. The decrease in strength and mass loss rate are significantly reduced after dry-wet cycle tests. Microscopic tests show that calcium alginate connects soil particles by Ca2+ ionic bridges, which allows the cementing materials to fill the loess pores and exert the role of agglomeration and coagulation to enhance the integrity of the loess. This study shows that the bio-based material with calcium alginate as the main body can effectively improve the mechanical strength and water stability of the loess.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call