Abstract

Abstract The mechanical properties and corrosion resistance of annealed superferritic stainless steel model alloy 25Cr–6Mo–5Ni were investigated in 0.6 M NaCl solution. The microstructure consisted of a ferrite matrix and eutectoid phase with a lamellar structure distributed at grain boundaries and within the ferrite grains with a spherical morphology. Tensile and impact results suggested brittle behavior of the model alloy. Fractography analysis revealed typical cleavage facets, river patterns and micro-cracks at grain boundaries and across the ferrite grains. Pitting corrosion began within the eutectoid phase, which contains in chrome depletion zones. Electrochemical impedance spectroscopy measurements suggest that the breakdown of passive films was more susceptible in the eutectoid phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.