Abstract

Silicon is a promising material due to it having reliable and desirable characteristics for making porous silicon membrane. Porous membrane is widely used in various applications especially in bioMEMS, Lab on Chip and MEMS. Normally, porous membrane functions as a part of filtration system that can be integrated with other systems to make a complete device. The porous silicon membrane is simulated using COMSOL 4.3a for mechanical verification. This work compares the simulation result of the silicon membrane design with theoretical calculation. This paper studies the effect of pressure across the silicon membrane based on the deflection and von Mises stress at the centre of silicon membrane. The maximum deflection and von Mises stress of different membrane thickness and pore shapes are compared against various levels of pressure applied on the silicon membrane surface. The 100 nm thin silicon membrane studied was found to be far superior to the 25 nm silicon thin membrane, being able to mechanically withstand the applied pressure up to 7.33 kPa (55 mmHg).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.