Abstract
Systemic sclerosis (SS) patients with severe esophageal affection have impaired peristalsis. However, motor function evaluated in vivo by manometry and fluoroscopy does not provide detailed information about the individual contraction cycles. To apply, for the first time in gastrointestinal (GI) patients, a method and principles modified from cardiac research to study esophageal muscle behavior in SS patients. Muscle contraction cycles were analyzed using pressure-cross-sectional area (P-CSA) loops during distension pressure up to 5 kPa. The probe with bag and electrodes for CSA measurements was positioned 7 and 15 cm above the lower esophageal sphincter (LES) in eleven healthy volunteers and eleven SS patients. The P-CSA, the wall tension, Δtension (afterload tension - preload tension), contraction velocity, work output (area of the tension-CSA loops), and power output (preload tension × CSA rate) were analyzed. The P-CSA loops consisted of phases with relaxation and contraction behavior. The tension-stretch ratio loops in patients were shifted to the left at both distension sites, indicative of a stiffer wall in patients. Lower contraction amplitudes and smaller P-CSA loops were observed for the SS patients. The work output, power output, Δtension, and contraction velocity were lower in patients (P < 0.001). Association was found between disease duration and the work output, Δtension, and velocity at pressure steps higher than 3 kPa (P < 0.05). Distension-evoked esophageal contraction can be studied in vivo and analyzed with advanced methods. Increased esophageal stiffness and impaired muscle function that depended on disease duration were observed for SS patients. The analysis may be useful for characterization of other diseases affecting GI function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.