Abstract

The open excavation and concealed construction method is widely adopted for the construction of bias double-arch tunnels. However, the mechanical behavior of the tunnel during the whole construction period by using the open excavation and concealed construction method is not well understood, and the basis for construction organization and optimization is lacking. Based on an open-buried double-arch tunnel on Xiajuan Road, Changsha City, China, on-site monitoring was carried out in terms of the deformation of the steel arch in the primary lining, the stress of reinforcement in the secondary lining, and the deformation of the surrounding rock during the construction process. The correlation between the vault settlement rate and the steel arch strain was analyzed. The results show that the maximum vault settlement and settling rate of the left and right caverns occur at different locations due to different supporting conditions. The peripheral displacement experiences a process of convergence inward and extension outward. The compressive steel stress in the secondary lining of the right cavern is greater than that in the left cavern, except for the points at the arch waist. The backfill above the left cavern reduces the loading on the lining of the right cavern, but it increases the loading on the left cavern. The bias effect of the open-buried double-arch tunnel is well controlled and balanced when the open excavation and concealed construction method is adopted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.