Abstract
Introduction: In order to solve the problems of time-consuming and poor effects of traditional mechanical vibration control methods for the relay, the mechanical characteristics and vibration control of railway signal relays are studied in this paper. Based on the analysis of the mechanical characteristics of railway signal relays, the mechanical characteristic parameters of the relay, such as contact force, initial pressure, contact clearance, and overtravel are explored. On this basis, mechanical vibration control is completed based on particle swarm optimization. Methods: First, sensors are used to collect the data on the railway signal relay, and the mechanical vibration control model of the railway signal relay is built. Then, the structure of the PID vibration controller and LQR vibration controller in the model is analyzed. Finally, the controller parameters are adjusted through particle swarm optimization to improve the mechanical vibration control effect of the relay. Results: The simulation results show that the average signal-to-noise ratio of the method is 67dB, the collected data has low noise, and the control time is short, which is 1.4 s. Conclusion: The displacement of the railway signal relay controlled by the method is always less than 0.15 mm, and the control effect is good, which can be widely used in practice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.