Abstract
The maximum radial size of the conventional three-bit four-way electromagnetic cartridge valve is greater than the largest containable size of the fluid control valve used for downhole robots. This paper proposes two kinds of solutions to reduce the radial dimension of the three-bit four-way electromagnetic insertion valve: one is to reduce the radial arrangement of the coil and increase the axial arrangement of the coil, and the other is to reduce the diameter of the moving iron core to reduce the winding radius of the coil. Using the theoretical model established in the following text, a simulation experiment was conducted. The results show that the movement of the valve spool is basically completed within 30 ms. Then, a matching experiment on the electromagnetic insertion valve was designed and conducted. The experimental results show that the opening time of the solenoid valve on the left coil is about 52 ms, and the opening time of the solenoid valve on the right coil is about 44 ms. The reaction time of the valve spool is suitable for the practical application of the solenoid valve. The significance of this paper is the reduced radial size of the three-bit four-way electromagnetic insertion valve. These improvements have reduced the size of downhole drilling robots, which facilitates the application of downhole drilling robots in narrower environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.