Abstract

The phenomenon of coal cake collapse is often caused by the unstable operation of the elastic cam in a large coal cake tamper. Aiming at this problem, the mechanical characteristics of the composite rubber elements during cam rotation are studied. A rubber piecewise-function constitutive model is established based on phenomenological theory, and different rubber constitutive model coefficients are obtained according to rubber test data. A contact simulation model between the elastic cam and the tamping hammer friction plate is established to obtain the stress–strain law of the composite rubber elements and the pressure-displacement curve of the elastic cam. The stiffness test platform of the elastic cam is designed, and the differences in results between the test and the simulation are discussed. The results show that the stress–strain curve of rubber has a nonlinear increasing trend and the error between the proposed piecewise function and the test value is less than 2%. As the cam displacement increases from 1 mm to 10 mm, the cam pressure increases from 7715 N to 40,000 N. The simulation results of the rubber stress–strain relationship using the piecewise-function constitutive model are closer to the test data than the simulation results using the elastic modulus as a constant, and the error is less than 6.18%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.