Abstract
Mechanical characterisation of biomaterials provides the basis for investigating disease-related changes in the biomechanical properties of living tissues and cells. Brillouin microscopy offers a non-invasive and label-free method to measure material properties. Briefly, Brillouin scattering involves energy exchange between photons and acoustic phonons, resulting in an optical frequency shift of the scattered light. This shift is proportional to the speed of sound in the material, and consequently to the longitudinal elastic modulus (M). However, it is unclear how Brillouin measurements, which characterize the mechanical response at GHz frequencies, relate to mechanical properties measured at much lower frequencies (~1 Hz) relevant to physiological conditions. Furthermore, as most biomaterials are hydrated, it remains unclear how the relative incompressibility of water influences the acoustic wave speed so as to affect Brillouin measurements of hydrated biomaterials. In this study, we aim to establish the relationship between Brillouin frequency shift, acoustic wave speed and quasi-static elastic modulus of hydrogels of varying stiffness. Hydrogels are homogeneous and isotropic materials that mimic the poroelastic nature of biological tissues. Each measurement probes the mechanics of hydrogels in a significantly different frequency range: GHz for Brillouin imaging, MHz for ultrasound and Hz for unconfined compression tests. The acoustic wave speed falls into range from 1490 to 1533 m/s in both MHz (ultrasound) and GHz (Brillouin) frequency ranges. The quasi-static modulus correlates positively with Brillouin frequency shift, increasing from 6 to 54 kPa. All the results indicate the measurements obtained by Brillouin microscopy are capable of representing the material properties of hydrogels in quasi-static condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.