Abstract
The mechanical behaviour of the upper layers of a sandy loam soil was studied under standard triaxial compression and direct shear box tests. Variations of soil material properties were investigated at four different initial dry bulk densities of 1410, 1520, 1610 and 1670 kg/m 3. Soil deformation and volume change under the triaxial compression loading were also studied at these bulk densities. Results from the two tests showed increases in the soil mechanical properties with the initial dry bulk density. The internal friction angle values measured with the triaxial compression apparatus exceeded those measured with the direct shear box. In contrast, the soil cohesion values measured with the direct shear box exceeded those measured with the triaxial compression apparatus. Under the triaxial compression test, the loose soil samples underwent contraction and volume reduction, whereas the dense samples swelled and failure cracks appeared clearly at various planes. The soil contraction for the former case characterizes the occurrence of soil compaction, whereas the cracks propagation and volume increase in the latter case characterizes the breaking up and loosening of soil during tillage operations. For the loose and moderately compacted states, the engineering Poisson's ratio increased with the axial strain until loading was completed. It also increased at the compacted and very compacted states until reaching given loading stages, after which its value started to decrease. This shifting in the engineering Poisson's ratio during loading may provide another identification of the moment of soil failure occurrence, in addition to that of the maximum shear stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.