Abstract

The microstructure and elevated temperature mechanical properties of continuous carbon fibre reinforced ZrC and TaC composites were investigated. Silicon carbide was added to both compositions to aid sintering during hot pressing. Fibres were homogeneously distributed and no fibre degradation was observed at the interface with the ceramic matrix even after testing at 2100 °C. The flexural strength increased from 260 to 300 MPa at room temperature to ∼450 MPa at 1500 °C, which was attributed to stress relaxation. At 1800 °C, the strength decreased to ∼410 MPa for both samples. At 2100 °C plastic deformation resulted in lower strength at the proportional limit (210–320 MPa), but relatively high ultimate strength (370–440 MPa). The sample containing ZrC had a lower ultimate strength, but higher failure strain at 2100 °C due to the weak fibre/matrix interface that resulted in fibre-dominated composite behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.