Abstract

This paper evaluated the influence of filling rate and printing direction on the mechanical properties of composite metastructure via experimental and numerical approaches. A representative volume element (RVE) and finite element method were adopted to estimate the tensile and flexural properties and verify the applicability of these methods in the 3D printing of composite metastructure. Results showed that apparent tensile and flexural properties drop with decreasing filling rates. The tensile and flexural strength reached 70.7 MPa and 131.1 MPa for solid specimens. The bending test for samples with different printing directions showed that the printing direction of the core has no noticeable effect on flexural strength, but the +45°/-45° sample exhibited the highest modulus. The numerical estimation showed similar trend compared to experimental results for both tensile and flexural properties. Such an attempt indicates the feasibility of designing a composite metastructure with an optimum weight-strength relationship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.