Abstract

ABSTRACT The research aimed to evaluate the mechanical behaviour, hybridisation and osteoblast activities of novel baghdadite/PCL-graphene nanocomposite scaffold. The mechanical behaviour was examined via measuring the compressive strength and Young’s module, the hybridisation was evaluated by Fourier transform infrared spectroscopy, Raman spectroscopy, and Brunauer Emmet Teller, and the osteoblast activities were assessed via MG-63 osteoblast cells. The results rendered PCL as a significant factor to enhance the mechanical strength of ceramic scaffolds. Due to the existence of σ and π covalent bonds in its structure, hydrophilicity and biocompatibility, graphene could be applied in scaffolds’ chemical compound to greatly enhance their mechanical and biological behaviours. This scaffold indicated compressive strength and Young’s module higher than 2 MPa and 0.05 GPa. Regarding cell behaviours, MG-63 osteoblast cells spread and attached well on the scaffolds confirming the viability, cytotoxicity, excellent cell attachment and proliferation. The results indicated that this scaffold possesses outstanding potential as a temporary substrate for bone tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.