Abstract

Granitic veins (GVs) have a significant influence on the mechanical responses of tunnels excavated in granitic strata. Distinguishing the mechanical properties of host granites (HGs), GVs and vein-granite interfaces (VGIs) is critical. For this, this paper analyzed the mechanical behaviors and rupture processes of typical HG, GV, and VGI samples under uniaxial compression condition. For the rocks studied, although the linear axial stress‒strain relation can be identified and the deformation modulus can be determined, the transverse deformation developed nonlinearly with axial stress. As a result, the instantaneous Poisson's ratio increases continuously and may even exceed 0.5, making it extremely difficult to accurately determine the Poisson's ratio. In addition, the studied GV samples were found to be significantly brittle, indicating that large-scale GVs cannot be ignored when assessing rockburst hazards in granitic strata with brittle GVs. In terms of the rupture process, the HG and GV samples were gradually damaged by the formation of small-scale cracks and then ruptured by large cracks formed from small-scale cracks, whereas the VGI samples ruptured along large cracks with significant energy release. By examining the characteristic stress thresholds of these three granites, it is noted that the crack closure stress σcc exceeds both the crack initiation stress σci and the crack damage stress σcd for the HG and VGI samples. The transverse damage to a tested sample appears to be significantly greater than the axial damage, which is essentially related to the rock grain size and grain size distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.