Abstract

Ultrahigh carbon (UHC) steels have been investigated for their strength and ductility characteristics from 600 to 850°C. It has been shown that such UHC steels, in the carbon range 1.3 to 1.9 pct C, are superplastic when the microstructure consisted of fine equiaxed ferrite or austenite grains (∼1 μm) stabilized by fine spheroidized cementite particles. The flow stress-strain-rate relations obtained at various temperatures can be quantitatively described by the additive contributions of grain boundary (superplastic) creep and slip (lattice diffusion controlled) creep. It is predicted that superplastic characteristics should be observed at normal forming rates for the UHC steels if the grain size can be stabilized at 0.4 μm. The UHC steels were found to be readily rolled or forged at high strain-rates in the warm and hot range of temperatures even in the as-cast, coarse grained, condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.