Abstract

The visible part of the floors of a commercial aircraft has long been a standard issue for virtually every commercial aircraft, mainly due to the weight of the materials from which they were made. Floor parts must provide mechanical strength and dimensional stability, while keeping the weight of the aircraft as low as possible for maximum efficiency. The design of the 787 Dreamliner and the Airbus A380 aircraft brought new opportunities in the use of the sandwich composite structure, mainly due to their light weight and high strength-to-weight ratio. Thus, this paper investigates the mechanical behavior of sandwich composite panels composed of two sides of carbon fiber laminate and Nomex honeycomb core obtained in the autoclave and developed under the RoRCraft CompAct grant. The technical approaches of this work are mainly focused on the compression behavior and especially on the compression after impact behavior of the hybrid sandwich composite structure, for defining and obtaining an optimal structure for the floors. These mechanical tests are decisive for such materials and have been performed in accordance with international ASTM standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.