Abstract

The evolution of innovative high-temperature electrochemical devices, such as high temperature solid oxide fuel cells (SOFCs), gas separators and gas reformers, consisting of metal–ceramic-joints is challenging. The seals have to be stable and gastight in isothermal high-temperature as well as in thermo-cyclic operation. Here, the reduction of porosity is the primary aim, to obtain air brazed joints with a long lifetime. In the last years, reactive air brazing (RAB) has gained rising interest for the joining of ceramic–ceramic and ceramic–metal compounds. In this paper an alternative brazing filler metal manufacturing process employing (physical vapor deposition (PVD)) is applied and its feasibility for the production of metal–ceramic composites has been investigated for Ag–4 wt%CuO. For RAB aluminum oxide with ferritic high chromium steel Crofer22APU have been joined. The pore formation in subordination of the braze and base materials can be monitored after brazing. By modifying the brazing process, the pore formation in the joints can be avoided. The microstructure of brazed joints with the developed braze foils is studied. Discussion of the results focuses on the influence of microstructural evolution on mechanical properties, the pore formation in the brazing seam and failure behavior of the brazed joints. A correlation between the process parameters brazing temperature and holding time and the achieved compound properties could be derived. Further, excellent wetting of the ceramic was obtained. The highest shear strength with 123 MPa was measured for a temperature of 1000 °C and 5 min, using the Ag4CuO alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call