Abstract

This paper explores the compression behavior of eco-friendly natural fiber-based isogrid lattice cylinder made of pineapple leaf fibers and phenol formaldehyde resin matrix. The filament winding method and an appropriate curing system was used to prepare specimens. The mechanical behavior of the structure was determined by axial compressive test. The interfacial adhesions between pineapple leaf fibers and phenol formaldehyde resin contain physical and chemical bonding by analyzing Fourier transform infrared spectroscopy. For the lattice cylinder, corresponding theoretical and finite element models were proposed to simulate the mechanical properties. Compared with the measured values, the predicted values for the theory and the finite element method were approximately 77–96% of the values of the experimental data. The failure forms of lattice cylinders focus on delamination and fracture of circular rib segments adjacent to the crossover, in agreement with the analytical position of shear failure based on the finite element method, indicating the validity of the predicted model. After that, an orthogonal test was designed to explore the impacts of structural parameters on the mechanical behavior of the lattice cylinder. The results indicated that the main influence factor of special load and stiffness is the number of equal divisions of the circumference. The lattice cylinder can be treated as a truss core combined with skins to manufacture a hierarchical sandwich structure, for use in the construction of some parts of buildings, like the floor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.