Abstract

This work investigates the mechanical behavior of mycelium composites reinforced with biodegradable agro-waste particles. In the composite, the mycelium acts as a supportive matrix which binds reinforcing particles within its filamentous network structure. The compressive behavior of mycelium composites is investigated using an integrated experimental and computational approach. The experimental results indicate that the composite mimics the soft elastic response of pure mycelium at small strains and demonstrates marked stiffening at larger strains due to the densification of stiff particles. The composite also exhibits the characteristic stress softening effect and hysteresis under cyclic compression previously observed for pure mycelium. To gain further insight into the composite behavior, a three-dimensional finite element model based on numerical homogenization technique is presented. Model validation is performed by direct comparison with experiments, and a parametric study of the effect of mycelium density and particle size is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.