Abstract
AbstractThe effect of layered-silicates on the mechanical response of intercalated polycarbonate (PC) nanocomposites subjected to quasi-static tensile, compressive and ballistic impact testing conditions has been investigated. These nanocomposites were melt-processed, in which good dispersion of nanoclays and adequate adhesive bonding between the nanoclay and PC matrix are achieved. However, their ductility upon tensile loading is significantly affected; a transition from ductile to brittle deformation occurs at clay loading of about 3 wt.%. Stress whitening is evident in the tensile- and ballistic-tested 1.5, 2.5, and 3.5 wt.% clay nanocomposites, and is attributed to the light scattering by microvoids, which are presumably formed from either crazing of PC or debonding of the nanoclay tactoids upon mechanical deformation. The effect of clay loading on the ballistic impact strength of the monolithic PC nanocomposites and layered PC/PC-nano/PC composites is determined. Compressive yield strength measurements are obtained at strain rate of 0.001/s for the monolithic PC nanocomposites and are utilized to correlate with the ballistic impact strength of the layered PC/PC-nano/PC composites. Thermal degradation is noted in these PC nanocomposites, and its effect on the mechanical deformation is briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.