Abstract

HQ01 is a superconducting quadrupole magnet under development by the LHC Accelerator Research Program (LARP) as a part of an R&D effort to demonstrate that Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn magnet technology is a viable option for a future luminosity upgrade of the LHC. The design is characterized by a 120 mm bore, a maximum gradient of 219 T/m at 1.9 K, and a support structure based on an aluminum shell pre-tensioned by water-pressurized bladders. The shell-based structure concept has already been successfully implemented in previous LARP quadrupole magnets. In HQ01, the structure incorporates additional features designed to provide full alignment between the support structure components and the coils. Specifically, the coil azimuthal alignment is achieved through outer layer pole keys which, by intercepting part of the force applied by bladders and shell, remain clamped to bolted aluminum collars from assembly to full excitation. A sequence of assemblies and cool-downs were executed with different keys sizes to characterize the alignment system and its impact on coil pre-load, at both room temperature and at 4.5 K. This paper reports on the mechanical behavior of the HQ01, by summarizing the strain gauge data and comparing them with FEM model predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.