Abstract
The mechanical properties of Fe-28%Mn-1.5%Al and Fe-0.6%C-18%Mn-1.5%Al-0.07%Nb (all in wt.%) steels subjected to hot plate rolling at a temperature of 1423 K with a total reduction of 60% were studied. The steels exhibited quite different mechanical properties in spite of almost the same original microstructures and similar stacking fault energies. The yield strength and total elongation of the Fe-28%Mn-1.5%Al steel are about 260 MPa and 45%, respectively, whereas those properties in the Fe-0.6%C-18%Mn-1.5%Al-0.07%Nb steel comprise 350 MPa and 53%, respectively. The tensile flow stress vs strain curves of the hot rolled steel samples can be described by Ludwigson-type relations with parameters being dependent on the strengthening mechanisms. Frequent deformation twinning in the Fe-0.6%C-18%Mn-1.5%Al-0.07%Nb steel promoted the strain hardening and improved the strength and ductility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Materials Science Forum
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.