Abstract

Fiber-reinforced cement composites were produced in Brazil using blast furnace slag cement reinforced with pulped fibers of sisal originated from agricultural by-products. Thin pads were produced by slurring the raw materials in water, followed by de-watering and pressing stages. Studies of mechanical behavior included observations of stable crack growth behavior under monotonic loading (resistance-curve behavior), followed by scanning electron microscopy (SEM) analysis of the fracture surfaces. Reinforcement with cellulose fibers resulted in improved fracture toughness, even after 9 months in laboratory environment. Microscopic analysis indicated a considerable incidence of crack bridging and fiber pull-out in the composite. The shielding contributions from crack bridging are estimated using a fracture mechanics model, before comparing with the measured resistance-curve behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call