Abstract

Abstractβ‐crystalline phase polypropylene (PP) composites containing 5, 10, 20, 30, and 40% (by weight) of CaCO3 filler were prepared by injection molding. The β‐form PP was produced by adding a bicomponent β‐nucleator consisting of equal amounts of pimelic acid and calcium stearate. The morphology, static tensile, and impact properties of these composites were investigated in this study. Scanning electron microscopy (SEM) observations revealed that the β‐spherulites of the polymer matrix of the composites exhibit curved lamellae and sheaf‐like structures. The fillers were observed to disperse within the inter‐lamellar spacings of the β‐PP composite containing 10% calcium carbonate addition. However, the filler particles tend to link together to form larger aggregates when the filler content reaches 20%. Static tensile measurements showed that the elastic modulus of the composites increases with increasing filler content but the yield strength decreases with increasing filler addition. The falling weight Charpy impact test indicated that the β‐PP polymer exhibits the highest critical strain energy release rate (Gc) value. However, there was a drastic drop in Gc of the β‐PP composites with increasing filler content. The results are discussed and explained in terms of materials morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.