Abstract

Several biaxial proportional and nonproportional loading experiments are reported for thin-wall tubes of a pseudoelastic Ni-Ti shape memory alloy (SMA). In addition to the mechanical behavior, temperature was measured during the experiments. It is shown that the phase transformation exhibits asymmetrical behavior in the case of tension-compression cycling. The transformation strain rate is determined for selected histories by numerical differentiation of data. Under nonproportional loading, the rate of phase transformation does not follow a generalized J2-J3 criteria based on results of micromechanical simulations for proportional loading. The role of simultaneous forward and reverse transformations on the nonproportional transformation response is examined using a simple micromechanical model, and the direction of the inelastic strain rate is adequately predicted. Load- and strain-controlled experiments at different strain rates, with and without hold times, are reported and coupled thermomechanical effects are studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call