Abstract
AbstractMechanical milling at cryogenic temperatures (cryomilling) was applied to fabricate a composite powder with 20 wt. % B4C (submicron-to-several microns in size) in a nanocrystalline (NC) 5083 Al matrix. A uniformly blended powder with 50 wt. % cryomilled composite powder and 50 wt. % coarse-grained (CG) 5083 Al powder was degassed, cold isostatic pressed (CIPped) and extruded to form a composite with 10 wt. % B4C, 50 wt. % CG 5083 Al and balance NC 5083 Al. This tri-modal material was then tested for mechanical behavior under compressive and tensile load conditions at various temperatures. The composite exhibited an extremely high yield stress at room temperature, but limited ductility. Although the composite lost its strength at elevated testing temperatures rapidly, the retained strength was still much higher than that of the conventional 5083 Al. The composite exhibits its highest ductility of 26% at 200°C under tensile load. In compression, it plastically deformed uniformly at all the elevated temperatures (≥373 K) and did not fracture even when the deformation exceeded 30%. The microstructure of this composite, including the distribution of each phase, the grain sizes of the Al matrix, the interfaces between these three phases, and the fracture surfaces were characterized using transmission electron microscopy (TEM) and optical microscopy (OM) techniques. The relationship between the microstructures and mechanical properties was discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.