Abstract

The aim of the present chapter has been to substantiate and explain the relation among the behavior of acoustic emission (AE) parameters, the course of external load, evolution of microstructure and the dislocation mechanisms of slip and the localization of deformation connected with twinning, formation of slip and shear bands. The problem is of fundamental meaning, when qualitative and quantitative relations between the rate of AE events, amplitude and energy of AE signals and other AE descriptors in relation to micro-processes occurring in a material are to be discussed. It is commonly believed that twinning is the most efficient source of acoustic emission (Bidlingmaier et al., 1999; Boiko, 1973; El-Danaf et al., 1999; Heiple & Carpenter, 1987; Tanaka & Horiuchi, 1975) due to fast release of great amount of elastic energy. It is connected with the fact that the velocity of twinning dislocations is higher than this of slip dislocations (Boiko, 1973), which results in the increase of contribution of accelerating effects in the recorded AE impulses. One of the first AE investigations concerned the tensile test of titanium and its alloys (Tanaka & Horiuchi, 1975), in which it was established, that the AE activity in Ti was bound with twinning from the beginning, while in Ti alloys the AE impulses from twinning appeared after a high degree of deformation. During compression of the ┛-TiAl alloy, AE sources were identified as generally coming from slip, twinning and the propagation of microcracks. It was reported, however, that the detailed mechanisms by which moving dislocations create elastic waves are still not fully understood (Bidlingmaier et al., 1999). Moreover, the problem of twinning in Al has still remained controversial. It is believed quite commonly, that at least in simple uniaxial strain state, like in a tensile test, twins do not appear in Al. One of the aim of this chapter is to demonstrate, that there are numerous proofs, that in a complex strain state, which occurs in the channel-die compression of single Al crystals at temperature of liquid nitrogen the twinning processes do occur. The reasons for undertaking such a research are numerous. At first, there is lack in literature of the experimental data on the AE behavior during channel-die compression of single

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call