Abstract

In this paper, an Al-Zn-Mg-Cu alloy with a small amount of Er and Zr added was used as the research object. The homogenization annealing was carried out, and the 7N01 aluminum alloy was used at 300 °C, 350 °C, 400 °C, 450 °C and 0.1 s-1, 1 s-1, 10 s-1 deformation conditions by Gleeble-3500 thermal simulator. Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Electron Backscatter Diffraction (EBSD) and Transmission Electron Microscopy (TEM) were used for microstructure analysis. The results show that the stress-strain curve of with Er 7N01 aluminum alloy can be divided into micro-strain stage, uniform deformation stage and steady-state flow stage during the thermal compression process. The flow stress of 7N01 aluminum alloy achieved peaks at the initial stage of strain, and then increased with the increase of strain rate and the decrease of deformation temperature. With the increase of deformation temperature and the decrease of deformation rate, the recrystallization process was significantly increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.