Abstract

A commercial aluminum alloy, 5083, was processed using a cryomilling synthesis approach to produce powders with a nanostructured grain size. The powders were subsequently degassed, hot isostatically pressed, and extruded. The grain size at each processing step was measured utilizing both X-ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the n-5083 extruded material were determined utilizing ASTM E8-93, Standard Test Methods for Tension Testing of Metallic Materials. This processing technique was found to produce a thermally stable nanostructured aluminum alloy which maintained an average grain size of 30 to 35 nm through several processing steps up to 0.61 T mp . The thermal stability was attributed to Zener pinning of the grain boundaries by AIN and Al2O3 particles and solute drag of numerous atomic species. The nanostructured 5083 was found to have a 30 pct increase in yield strength and ultimate strength over the strongest commercially available form of 5083, with no corresponding decrease in elongation. The enhanced ductility is attributed to the presence of a few large, single-crystal aluminum grains acting as crack-blunting objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.