Abstract

Based on the axial stress-axial strain curves, the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed. The mechanical parameters of sandstone specimens containing combined flaws are all lower than that of intact specimen, but the reduction extent is distinctly related to the fissure angle. The results of sandstone specimens containing combined flaws are obtained by the acoustic emission, which can be used to monitor the crack initiation and propagation. The ultimate failure mode and crack coalescence behavior are evaluated for brittle sandstone specimens containing combined flaws. Nine different crack types are identified on the basis of their geometry and crack coalescence mechanism (tensile crack, hole collapse, far-field crack and surface spalling) for combined flaws. The photographic monitoring was also adopted for uniaxial compression test in order to confirm the sequence of crack coalescence in brittle sandstone specimens containing combined flaws, which recorded the real-time crack coalescence process during entire deformation. According to the monitored results, the effect of crack coalescence process on the strength and deformation behavior is investigated based on a detailed analysis for brittle sandstone specimens containing combined flaws by using digital photogrammetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.