Abstract

In this paper, a wolfram with wolfram carbide (W/WC) coating, which deposited on a 304 stainless steel and Si wafers, is prepared through co-sputtering by unbalanced magnetron sputtering technology with added C2H2 ionization-assisted deposition. The microstructure and the mechanical properties of the W/WC coating are characterized by the equipment of scanning electron microscopy, X-ray diffraction, Raman, nanoindenter, scratcher, and Rockwell. Besides, a UMT-3 ball-disk reciprocating friction machine is used to study the tribological properties in the environments of atmosphere, deionized water, and seawater. The experimental results show that the C2H2 ionization gains the deposition rate and the carbon content of the W/WC coating, but significantly reduces the density and the relative wolfram content. Moreover, the sp3 content is increased and the sp2 content and the graphitization degree of coating are decreased. Compared to the W/WC coating without the C2H2 ionization, the hardness and the elastic modulus of the prepared coating are increased from 12.02 GPa and 179.91 GPa to 19.37 GPa and 269.61 GPa, respectively. In addition, the adhesive strength is reduced from 19.31 N to 9.41 N. For the tribological properties, the friction coefficient and the wear rate of the prepared coating are increased. The prepared W/WC coating is mainly abrasive wear in dry friction and in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.