Abstract

In this study, two CrAl/CrAlN multilayer coatings of 1.5 µm and 1.2 µm thicknesses were deposited from a (50:50) CrAl sectioned target by high-power impulse magnetron sputtering (HIPIMS) onto A11 tool steel to evaluate the effect over mechanical and tribological properties by the addition of an (a-CNx) top layer. XRD analysis showed a CrAlN FCC structure (111) and a Cr phase (110). A glass-like morphology was observed in the CrAl layer and in the (a-CNx) top layer, while the CrAlN layers exhibited a columnar morphology according to the FE-SEM analysis. Raman analysis results confirmed characteristic peaks G and D for the carbon amorphous structure of the (a-CNx) top layer. Nanoindentation results showed comparable hardnesses (23.08 GPa ± 2.8 and 20.58 GPa ± 1.8) in both multilayer coatings. The CrAl/CrAlN multilayer with an (a-CNx) top layer increased the absorption energy capacity and the mechanical potential energy stored. The nano scratch test showed the strongest crack resistance and highest adhesive energy values for the CrAl/CrAlN multilayer. The addition of an (a-CNx) top layer improved the tribological behavior when higher normal loads were applied during the fretting test. Raman analysis showed an increase in the I(D)/I(G) ratio and a formation of a carbon sp2 structure (i.e., graphite-like structure) over the worn surfaces, as well as dissipated energy (J/m) during the fretting test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call