Abstract

In the current investigation, an elemental blending of equiatomic Ni and Ti powder was considered to spray on mild steel by the atmospheric plasma spray process. The results revealed that the coating developed with 120 mm stand-off distance (SOD) has better mechanical properties such as microhardness and adhesion strength. Again, SOD predominantly influences the formation of intermetallics (NiTi, Ni3Ti, Ti2Ni, and TiO) that helps to enhance the microhardness (683.85 HV) as well as the mechanical interlocking and chemical bonding that is solely responsible for the high adhesion strength (43.17 MPa) of the coating. The failure analysis of the coating developed at too high and too low SOD revealed that rapid expansion of gas stream, reduction in enthalpy of particles, improper heat transfer, burning of splat, agglomeration of particles during flight, and oxidation are the key factors responsible for the reduction in mechanical properties of plasma-sprayed Ni-Ti alloy (NITINOL) coatings. In addition to the above, the solid particle erosion analysis revealed the increase in brittleness of the coating with increasing in SOD. The surface morphologies of the eroded surface depict various erosion mechanisms at both 45° and 90° impingement angles such as chip formation, lip formation, plastic deformation, scratches, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.