Abstract

In this study, the effect of heat treatment and yttrium additions on the microstructure, mechanical properties, and tribological behavior of Al-15% Mg2Si cast composites was investigated. The microstructural study revealed the presence of both primary and secondary Mg2Si phases in all composite specimens and also Y-containing intermetallics (Al2Y phases) at higher concentrations. It was also found that Y addition does not change the size and morphology of primary Mg2Si particles considerably, but the pseudo-eutectic Mg2Si changed from a flake-like morphology to fine fibrous or rod-like one. The results show that proper content of Y additions can reduce the amount of Mg2Si phase through dissolving it into the matrix, lead to the precipitation of Al2Y phase and improve the mechanical properties. Modified composites with 0.5% Y exhibited an ultimate tensile strength (UTS) of 290 MPa with an elongation of 4.3%. After exposing the composite to solution treatment at 520 °C for 4 h, the tensile strength of the composite continuously increased with the increase of Y content, and reached the maximum at 1% Y. The maximum UTS and elongation at room temperature for the heat-treated composites are 294 MPa and 7.4%, respectively. In the cast specimen, fracture surfaces are covered by packets with coarse steps, suggesting a brittle mode of failure. Modified composites with 0.5 wt.% Y contain several cracked particles together with a few decohered primary Mg2Si particles. In solution heat-treated state, dimples present at the fracture surface are rather coarse but homogenous, showing a semi-ductile mode of fracture. Wear test results showed that the wear resistance of all specimens increases with the addition of Y up to 0.3 wt.%. Scanning electron microscopic observations of the worn surfaces revealed that the dominant wear mechanism was abrasive wear accompanied by some delamination wear mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.