Abstract

In this study, novel surface engineering strategies to improve the wear performance of AISI 4340 were investigated. The strategies were as follows: (i) NiP deposition on a previously nitrided steel substrate, followed by NiP interdiffusion heat treatment at either 400 °C or 610 °C (referred to as duplex treatment); (ii) the deposition of AlCrN PVD coating on NiP layers on a previously nitrided steel substrate (referred to as triplex treatment). Prior to the deposition of AlCrN, the NiP was subjected to the interdiffusion heat treatment at either 400 °C or 610 °C. These strategies were compared with the performance of the AlCrN coating directly applied on nitrided steel. To characterize the microstructural features of each layer, X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) analysis were conducted. We also carried out mechanical and tribological behavior assessments. The tribological tests were carried out using a ball-on-disc tribometer under a constant load of 20 N and a tangential speed of 25 cm/s; cemented carbide spheres with a diameter of 6 mm were the counterpart body. The friction coefficient was continuously monitored throughout the tests. The results reveal that the wear mechanism for the AlCrN coating is predominantly oxidative. The most wear-resistant surface architecture was the one comprising AlCrN over the NiP layer subjected to interdiffusion heat treatment at either 400 °C or 610 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call