Abstract

ABSTRACTThe study of organic-inorganic nanocomposites has become relevant in recent years since these materials exhibit synergistic properties derived from the two components. Thermosetting polymers like epoxies that have high mechanical properties provide a baseline for further improvement with the addition of nanoclay particles. These nanocomposites can be used as the matrix of a fiber reinforced composite and lead to higher matrix dominated mechanical properties including elastic modulus, strength and fracture toughness. This study concentrates on the mechanical and thermoviscoelastic properties in the glassy regime of nanocomposites prepared by direct mixing. The elastic modulus of the nanocomposites was found to improve with respect to the pure epoxy modulus at the expense of both tensile strength and ductility regardless of clay content. The glass transition temperature was also found to decrease as well. The morphology of the nanocomposites was studied and correlated with the aforementioned properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call