Abstract
In this study, experimental investigation is performed for producing new cement-based with relatively high strength, low density and good thermal properties for energy efficient buildings. Different types of concretes containing silica fume (SF), superplasticizer (SP) and air-entrained admixtures are prepared with a constant water–cement ratio, and normal aggregates replaced by lightweight aggregates (LWAs) including pumice (PA), expanded perlite (EPA) and rubber aggregates (RA) at different volume fractions of 10%, 20%, 30%, 40% and 50%. 102 samples with different materials and compositions are produced, and their characteristics are tested in accordance with ASTM and EN standards. Based on the experimental results, equations are presented to determine the relation between the thermophysical properties of composite samples. The investigation revealed that the addition of PA, EPA and RA reduced the material bulk density and compressive strength, and improved the insulation characteristics of the composite concretes. Furthermore, it was found out that the reductions in thermal conductivity and diffusivity of the produced samples reached to 82% and 74%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.